L-Lysine
Image of L-Lysine | C6H14N2O2 | Supreme Pharmatech
Chemical Formula C6H14N2O2
Molecular Weight 146.19 g/mol
Names and Identifiers
PubChem Link
Traditional Name L-Lysine
CAS Registry Number 56-87-1

 

Lysine is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain lysyl ((CH2)4NH2), classifying it as a basic, charged (at physiological pH), aliphatic amino acid. It is encoded by the codons, AAA and AAG. Like almost all other amino acids, the α-carbon is chiral and lysine may refer to either enantiomer or a racemic mixture of both. For the purpose of this article, lysine will refer to the biologically active enantiomer L-lysine, where the α-carbon is in the S configuration.

The human body cannot synthesize lysine, so it is essential in humans and must be obtained from the diet. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ different enzymes and substrates and are found in different organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway.

Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. The ε-amino group often participates in hydrogen bonding and as a general base in catalysis. The ε-ammonium group (NH3+) is attached to the fourth carbon from the α-carbon, which is attached to the carboxyl (C=OOH) group.

Due to its importance in several biological processes, a lack of lysine can lead to several disease states including defective connective tissues, impaired fatty acid metabolism, anaemia, and systemic protein-energy deficiency. In contrast, an overabundance of lysine, caused by ineffective catabolism, can cause severe neurological issues.

Lysine was first isolated by the German biological chemist Ferdinand Heinrich Edmund Drechsel in 1889 from the protein casein in milk. He named it "lysin". In 1902, the German chemists Emil Fischer and Fritz Weigert determined lysine's chemical structure by synthesizing it.

Useful Links

SUPREME PHARMATECH CO., LTD. SUPREME PHARMATECH CO., LTD. 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, THAILAND E-Mail : supreme.pharmatech@gmail.com ID Line : supremepharmatech Hotline : 0888 700-007 Tel. +66-2-1307888
Fax +66-2-1307889