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Abstract. – OBJECTIVE: Since the emer-
gence of coronavirus disease (COVID-19), the 
death toll has been increasing daily. Many risk 
factors are associated with a high mortality rate 
in COVID-19. Establishment of a common path-
way among these risk factors could improve our 
understanding of COVID-19 severity and mortali-
ty. This review aims at establishing this common 
pathway and its possible effect on COVID-19 
mortality.

MATERIALS AND METHODS: The current re-
view was executed in five consecutive stag-
es starting from determining the risk factors of 
COVID-19 mortality and trying to find a common 
pathway among them depending on the avail-
able literature. This was followed by propos-
ing a mechanism explaining how this common 
pathway could increase the mortality. Finally, its 
potential role in managing COVID-19 was pro-
posed. 

RESULTS: This review identified this common 
pathway to be a low baseline of reduced gluta-
thione (i.e., GSH) level. In particular, this review 
provided an in-depth discussion regarding the 
pathophysiology by which COVID-19 leads to 
GSH depletion, tissue damage, and acute respi-
ratory distress syndrome. In addition, the cur-
rent review demonstrated how GSH depletion 
could result in failure of the immune system and 
rendering the end organs vulnerable to damage 
from the oxidative stress.

CONCLUSIONS: This preclinical study shows 
that GSH depletion may have a central role in 
COVID-19 mortality and pathophysiology. There-
fore, elevating the GSH level in tissues may de-
crease the severity and mortality rates of COVID-19.
Key Words:

COVID-19, COVID-19 mortality, SARS-CoV-2, Gluta-
thione, Antioxidant, Acute lung injury, Respiratory dis-
tress syndrome.

Introduction

The coronavirus disease (COVID-19) pandem-
ic has been affecting the global population, with 

an ever-increasing death toll. No nation, popula-
tion, age group, or sex has been spared. Tens of 
thousands of cases are being reported per day, 
and no standard treatment protocol has been es-
tablished. 

Perplexingly, COVID-19 is selective in its se-
verity as some patients may develop mild or no 
symptoms, whereas others may develop severe 
symptoms and subsequently die. The reason for 
this phenomenon should be studied and elabo-
rated to reduce COVID-19 mortality and/or mor-
bidity. 

The literature has revealed that mortality from 
COVID-19 is highly associated with the cytokine 
storm that may cause end-organ damage1. It was 
also found that the COVID-19 mortality rate is 
high in patients with different medical or disease 
conditions2. The current review aims to examine 
the literature regarding these risk factors in an at-
tempt to find an association between these factors 
and the induction of a cytokine storm. This cor-
relation would facilitate a better understanding of 
COVID-19 pathophysiology and answer pertinent 
questions concerning this disease mortality, com-
plications, and prevention.

The current review was executed in five 
consecutive stages: (1) the literature involving 
COVID-19 mortality and patient demographics 
was reviewed to identify the risk factors associ-
ated with a higher mortality rate; (2) multiple hy-
potheses and assumptions suggesting a common 
pathophysiology among all these factors were 
proposed; (3) a literature review was conducted 
to challenge these hypotheses and assumptions to 
determine this common factor; (4) based on the 
literature, an explanation of this common factor’s 
role in increasing the mortality rate and severity 
of COVID-19 was given; and (5) finally, a review 
of the literature was conducted to determine any 
potential role of this common factor in the man-
agement of COVID-19.
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Search Strategy and Selection Criteria
PubMed and Google Scholar search engines 

were used to search for articles related to the cur-
rent review. Searched references were published 
from January 1960 to April 2020 by using the 
following terms either in solo or in combination: 
“COVID-19,” “SARS-CoV-1 and SARS-CoV-2,” 
“influenza, flu, H1N1, and H1N5,” “glutathione,” 
“N-acetylcysteine,” “acute respiratory distress 
syndrome and acute lung injury,” “acute inflam-
matory response syndrome,” “cytokine storm,” 
“myocarditis,” “reactive oxygen species and re-
active nitrogen species,” “oxidative stress,” “mor-
tality,” “HIV,” “lymphocytes,” “interleukin,” 
“tumor necrosis factor,” “interferon,” “end-or-
gan damage,” “coronavirus,” “antiviral and viral 
inhibition,” “endothelial damage,” “lymphope-
nia,” “redox and reduction-oxidation,” “random-
ized control trials and meta-analysis,” “hospital 
stay and intensive care unit stay,” “neutrophils,” 
“macrophage,” and “natural killer cells”. Articles 
resulting from these searches and relevant refer-
ences cited in those articles were reviewed. Ar-
ticles published in English, Chinese, and Korean 
were included.

Risk Factors Associated with COVID-19 
High Mortality Rate 

Since the emergence of COVID-19, multiple 
risk factors have been identified to be associated 
with a high mortality rate. Different research-
ers2-11 have reported significant risk factors, in-
cluding age, hypertension, ischemic heart dis-
ease, diabetes, and chronic respiratory disease.

Other factors, including obesity, pre-existing 
malignancy, and smoking, were claimed as risk 
factors for COVID-19 mortality but with equiv-
ocal evidence9,12-18. Interestingly, the negative ef-
fect of non-steroidal anti-inflammatory medica-
tions on COVID-19 was not widely accepted and 
was termed inconclusive by many authors19-21.

These heterogeneous risk factors could be as-
sociated with a common pathway that may cause 
a high incidence of COVID-19 mortality. Deter-
mining this pathway would enable a better under-
standing of the disease pathophysiology, which 
may eventually help decrease the mortality rate. 

Once the risk factors were identified (as shown 
above), common pathways involving these risk 
factors were hypothesized. Each assumed hy-
pothesis was tested based on the available medi-
cal literature to prove or disprove the mutual as-
sociations among COVID-19 risk factors. These 
hypotheses included the involvement of baseline 

(before the development of COVID-19) C-reac-
tive protein levels, white cells counts, vitamin D3 
levels, lymphocyte counts, total protein levels, 
albumin levels, frequency of multivitamin and 
nutrient supplement intakes, physical activity lev-
els, and glutathione (i.e., GSH) levels. All these 
hypotheses were disproved, except that involving 
the GSH level.

In particular, a low baseline GSH level was the 
common factor among all patients included in the 
high-risk group for COVID-19 mortality. This 
association with low GSH levels is discussed in 
detail in the next section. 

Glutathione and the Risk Factors for 
COVID-19 Mortality

In the current review and based on the pub-
lished literature, all reported risk factors were 
identified to reduce the baseline GSH level. 

Increasing age, which is one of the most no-
ticeable risk factors for COVID-19 mortality, was 
associated with declined GSH levels22-24. This 
decline may be due to extensive GSH oxidation 
or a combination of extensive GSH oxidation and 
a decrease in the total pool of thiol22,23. The drop 
in the thiol pool was also noticed in a larger scale 
study in middle-aged and older community-liv-
ing healthy subjects in Europe25. Under either 
circumstance, this will lead to a drop in the level 
of available GSH. 

Hypertension was linked to altered GSH me-
tabolism in which  the ratio of reduced GSH to its 
oxidized form (GSSG) is altered26,27.

Ischemic heart disease was associated with 
a decreased GSH level and GSH to GSSG ra-
tio28. This impaired ratio was also demonstrated 
in patients with atherosclerosis, where it was 
found in subjects with early disease who are 
even clinically asymptomatic29. Moreover, GSH 
levels were also shown to be low in the offspring 
of patients with coronary artery disease30. It 
was shown that N-acetylcysteine administration 
(which is a precursor for GSH synthesis)31,32 im-
proved vasodilation in the coronary and periph-
eral vasculature33. 

Diabetes was associated with low GSH lev-
els22,34. This was evident in patients with or with-
out diabetes-related complications22,35. Different 
types of chronic lung diseases were also associat-
ed with low GSH levels in the lung or plasma36-40. 
This association was even found in infants41.

Smoking and obesity were associated with low 
baseline GSH levels39,42-44. Even a lower body 
mass index was associated with a less oxidized 
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form of GSH in the circulation45. In addition, 
impairment of GSH homeostasis was found in 
patients with alcoholism, renal failure, malig-
nancies, and chronic illnesses46-55. Finally, ace-
tylsalicylic acid (one of the non-steroidal anti-in-
flammatory drugs) was found to induce GSH 
depletion when used56. 

Previously published literature confirms that 
the different risk factors associated with high 
mortality rates in COVID-19 have low baseline 
GSH levels or impaired GSH metabolism in 
common. Therefore, how could low GSH levels 
(absolute or relative) put these patients at risk for 
developing a severe/fatal form of the disease? 
This question will be thoroughly answered in 
the following sections. First, the development 
of a cytokine storm in COVID-19 patients and 
the subsequent depletion of GSH levels will be 
tracked. Then, the effect of GSH depletion on 
suppressing the innate immune system will be 
highlighted. Subsequently, the effect of GSH de-
pletion on the reduction of the activity of the 
cellular antioxidant system, which would render 
the end-organ vulnerable to damage caused by 
reactive oxygen species, will be discussed. Final-

ly, the potential role of GSH as an antiviral agent 
will be explained. A summary of the hypothesis 
is shown in Figure 1.

 
COVID-19 and Its Cytokine Storm

COVID-19 mortality is mainly caused by re-
spiratory failure due to acute respiratory dis-
tress syndrome or myocarditis2,57,58. These deadly 
complications are mainly a result of the cytokine 
storm2,59. Until now, it is not clear why this hap-
pens in some patients and not in others; however, 
there is emerging evidence that severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2) mainly affects lymphocytes, especially 
T lymphocytes, resulting in dysregulation of the 
immune system, lymphopenia, and the cytokine 
storm58,60. As of the time of writing this review, 
no definitive treatment is available for resolving 
the cytokine storm. Thus, prevention of this con-
dition would be the cornerstone of management. 

During the cytokine storm, many cytokines 
are elevated, particularly interleukin 1 (B and 
RA), interleukin 6, and tumor necrosis factor α, 
which are very potent pro-inflammatory com-
pounds58,61,62. This elevation is proportional to the 

Figure 1. The hypothetical role of GSH in COVID-19 mortality. ROS: reactive oxygen species. Active glutathione: the 
reduced form. Baseline: the level before infection.
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severity of COVID-1958,63. A massive elevation of 
these pro-inflammatory cytokines will lead to a 
large increase in reactive oxygen species produc-
tion by the mitochondria64. These reactive oxygen 
species are toxic to intracellular organelles and 
cell function, which can induce acute lung injury/
acute respiratory distress syndrome and lympho-
cyte dysfunction/lymphopenia64-68. 

The scavengers of these reactive oxygen spe-
cies are the intracellular anti-oxidation systems 
from which the GSH and its regulatory enzymes 
are considered the most important69,70. Overpro-
duction of reactive oxygen species could lead to 
GSH depletion69. 

GSH depletion leads to a loss of its protec-
tive functions in terms of the end organs and 
endothelium. GSH depletion can lead to the 
impairment of the function of lymphocytes, 
macrophages, and neutrophils, rendering an im-
munocompromised state, which may explain 
the high incidence of secondary infections in 
COVID-19 patients2. Moreover, GSH depletion 
triggers the apoptotic cascade in lymphocytes, 
leading to lymphopenia, affecting mainly T 
lymphocytes71,72. Low lymphocytic counts (ab-
solute or relative) at the time of presentation 
are associated with a high mortality rate in 
COVID-19 patients2,73. The assumed effect of 
GSH level depletion on COVID-19 will be dis-
cussed in the following sections. 

Glutathione and the Immune System
GSH is extremely important for the proper 

function of the immune system in general and 
lymphocytes in particular74,75 as low GSH levels 
inhibit T lymphocytes proliferation and subse-
quently disturbs the immune response76,77. This 
could be reversed by administering N-acetylcys-
teine75,78,  which elevates GSH levels in the tis-
sues by providing the amino acid cysteine31,32. A 
low GSH level inhibits interleukin-2 production, 
which induces lymphocyte proliferation79. 

The role of GSH on the immune system in 
COVID-19 patients could be established from 
its role in other viral infections associated with 
low lymphocytic count. For example, in HIV 
infection, low levels of GSH were associated 
with low levels of CD4 T lymphocytes and lower 
survival rates80,81. The opposite was also true; 
high GSH levels (by means of supplementation) 
improved CD4 T lymphocyte function in HIV 
patients82. Consequently, administration of GSH 
in COVID-19 patients may share similar positive 
effects as in HIV patients.

Even in non-viral conditions, inhaled N-acetyl-
cysteine improved the lymphocytic count in the 
lungs of patients with cystic fibrosis83. Enhancing 
the function and proliferation of immune cells 
was also noticed after GSH administration to 
healthy adults72. In addition, GSH supplementa-
tion increased the cytotoxicity of natural killer 
cells and the proliferation of lymphocytes72. 

A more profound effect of low GSH levels on 
the immune system would be the induction of 
lymphocytes’ apoptotic cascade. In particular, 
GSH depletion is necessary for apoptosis to be 
triggered in the lymphocytes regardless of reac-
tive oxygen species71. Interestingly, it was noticed 
that to induce apoptosis of leukemic Jurkat T 
lymphocytes (immortal cells), GSH has to be 
pumped out of the cells84.

This effect on apoptosis combined with pro-
liferation inhibition could explain why patients 
with COVID-19 experience a low T lymphocytic 
count and the subsequent failure of the immune 
system. This was associated with a high mortal-
ity rate in COVID-19 patients2,73.  This resultant 
failure could lead to uncontrolled replication of 
the virus, secondary infections and continuous 
shedding of the virus in patients who die from 
COVID-19 regardless of the time elapsed from 
the start of the infection3,2. 

Of lesser importance, the effect of GSH in the 
immune system is also observed on macrophages 
and neutrophils. GSH is essential for the effi-
ciency of phagocytosis in neutrophils85 and was 
found to improve macrophage function in HIV 
patients86. These findings further emphasize the 
importance of GSH in the immune system.

As shown above, this resultant failure of the 
immune system combined with the loss of GSH’s 
protective effect as an antioxidant may explain 
the progression of the disease into an acute respi-
ratory distress syndrome/acute lung injury. 

Glutathione as an Antioxidant
As explained earlier, COVID-19 results in a 

cytokine storm and a subsequent reactive oxygen 
species. GSH is the most important endogenous 
antioxidant and is fundamental in detoxification 
of these reactive oxygen species51, which are the 
culprits to be blamed for lung damage resulting 
from the inflammatory conditions87. Reactive ox-
ygen species and their byproducts (e.g., reactive 
nitrogen species) are produced in the mitochon-
dria in response to variable cytokines, such as 
interleukin 1B and TNF-α87-89. Those reactive 
species will produce hydrogen peroxide in the 
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mitochondria, which will diffuse to the cyto-
sol resulting in intracellular and/or extracellular 
damage90. 

This hydrogen peroxide is regulated by multi-
ple cell systems, like catalase, thioredoxin perox-
idase, and, most importantly, GSH peroxidase51,91. 
GSH peroxidase utilizes reduced GSH in de-
toxification of the reactive oxygen species and 
their byproducts (free radicals, nitrogen reactive 
species, and hydrogen peroxide) in a process that 
may lead to GSH depletion in the cell51.  Such 
depletion can result in severe and irreversible 
damage to the cell, which can be fatal as in ac-
etaminophen toxicity51. The inability to detoxify 
reactive oxygen species and their byproducts 
will result in inflammation, increased vascular 
permeability, and end-organ damage51. On the 
contrary, the administration of GSH and/or its 
precursors was beneficial in managing some in-
flammatory conditions92-94. 

It is worth mentioning that the mechanism 
of action of GSH is to prevent tissue damage 
induced by oxidative stress and not to treat an al-
ready established damage in the end-organ. This 
would explain the lack of clinical improvement 
in patients with an established systemic inflam-
matory response syndrome or acute respiratory 
distress syndrome, as shown in some articles 
after the administration of N-acetylcysteine95. In 
addition, some studies showed that taking N-ace-
tylcysteine did not decrease the mortality in pa-
tients with established acute respiratory distress 
syndrome; however, it did shorten the patients’ 
stay in the intensive care unit (ICU)96-99. None-
theless, an N-acetylcysteine nebulizer was shown 
to be effective in preventing ventilator-induced 
pneumonia, shortening the lengths of ICU stay 
and hospital stay100. Its use was associated with 
a significant increase in the number of patients 
attaining complete recovery100.

In addition, prophylactic administration of 
N-acetylcysteine enhanced recovery in patients 
with lung injury93 and prevented acute kid-
ney injury post-contrast101. Further, nebulized 
N-acetylcysteine with unfractionated heparin 
improved survival rates and decreased the de-
velopment of acute respiratory distress syn-
drome after smoke inhalation injury102. More-
over, administration of N-acetylcysteine im-
proved the antioxidant status in male patients 
with chronic obstructive pulmonary disease103, 
improved the inflammatory markers in patients 
with community-acquired pneumonia104 and 
improved FEV1 in cystic fibrosis105.

As shown above, the protective effect of GSH 
against oxidative stress experienced during acute 
or chronic inflammatory conditions is well doc-
umented. GSH depletion makes the end-organ 
prone to damage by reactive oxygen species. 
However, the administration of GSH may have 
a protective effect against end-organ damage, 
especially acute respiratory distress syndrome/
acute lung injury. 

Antiviral Effect of GSH
GSH enhances the ability of macrophages 

against different viruses, probably by functioning 
as an intracellular signal106. It has shown antiviral 
properties against influenza viruses in vitro and 
in vivo107,108. In particular, it decreased the lung 
inflammation induced by the H1N1 influenza 
virus109. In addition, it enhanced the effect of os-
eltamivir and prevented the development of fatal 
influenza110. N-acetylcysteine has shown inhibito-
ry effects against H5N1 influenza virus111.

Additionally, GSH has shown antiviral effects 
against dengue virus and herpes simplex virus 
type 1112-114. N-acetylcysteine suppressed HIV ex-
pression115, decreased the infectivity of rotavi-
rus116,117, and decreased the damage experienced in 
piglets after being infected by the porcine epidem-
ic diarrhea virus (which is a delta coronavirus)118. 

Interestingly, Xu et al119 investigated viral shed-
ding during the convalescent phase and showed 
that the protein structure of SARS-CoV-1 has been 
destroyed by N-acetylcysteine administration.

This confirms that GSH/N-acetylcysteine has 
antiviral activity toward a wide range of viruses. 
Nothing was common among these viruses, which 
showed sensitivity to GSH. They range from DNA 
viruses to retroviruses and from respiratory virus-
es to enteral viruses. This stresses the potential 
antiviral activity of GSH/N-acetylcysteine.

Recently, a case report of two patients was 
published after the completion of this article. 
Two patients with shortness of breath due to 
COVID-19 pneumonia were treated with GSH 
and showed a dramatic and rapid response within 
hours120.

Conclusions

GSH is essential for proper functioning of the 
immune system, especially T lymphocytes and 
macrophages. Intracellular GSH is responsible 
for proper T lymphocyte function, proliferation, 
and prevention of apoptosis. In addition, proper 
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GSH levels should be maintained in patients with 
severe inflammatory response syndrome to coun-
teract oxidative stress and end-organ damage. Fi-
nally, GSH has an inhibitory effect on many viral 
strains. These data may explain why people with 
depleted GSH levels are prone to mortality from 
COVID-19. This is particularly true in patients 
with risk factors for COVID-19 mortality.

GSH may be at the core of COVID-19 patho-
physiology. 

This preclinical study may form a basis for 
more in-depth studies concerning the efficacy of 
GSH and its precursors in managing COVID-19 
as an adjunct treatment with the most acceptable 
protocols.
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